**International Journal of Zoology and Applied Biosciences** Volume 7, Issue 2, pp: 21-26, 2022 https://doi.org/10.55126/ijzab.2022.v07.i02.005

**Research Article** 



http://www.ijzab.com

Rishan

## **APPLICATION OF PARTIAL CYTOCHROME b and 12S rRNA GENES** FOR MAMMALIAN SPECIES IDENTIFICATION

### \*Vaishnavi Chandramouli, Pradeep Anbazhagan, Vasantha Kumari, Kanchana Rangasamy, Debasis Jana

Centre for Wildlife Forensic Sciences, Advanced Institute for Wildlife Conservation, Tamil Nadu Forest Department, Chennai-600048, India.

Article History: Received 17th March 2022; Accepted 08th April 2022; Published 14th April 2022

#### ABSTRACT

Determination of species from wildlife specimens is one of the prime goals of forensic laboratories analyzing samples involved in wildlife crimes. The conviction rate in wildlife crimes is often low due to a lack of evidential support in identification of the species involved in crime. When species identification by application of morphological techniques fails due to sample autolysis or lack of anatomical markers in wildlife specimens, DNA analysis provides the vital, foolproof cue. Sequences generated from mitochondrial DNA regions are used to determine the species by matching against a known reference sequence, either using the global GenBank database or using references created locally. The present study employed species identification by DNA analysis using wildlife samples received from the Forest Department across Tamil Nadu, India. The study demonstrates the utility of partial Cytb and 12S rRNAgenes for determination of species from 18 samples without recognizable morphological features, including tissue, hair and blood. The species of the collected specimens were correctly identified by sequence similarity search with 99 to 100% match and taxonomic classification using phylogenetic tree reconstruction. Of the 18 samples analyzed, accurate species identification using 12S rRNA gene was possible for all the samples, while Cytbgene-based identification was successful for 16 samples. Sequences generated from the study could also serve as a local genetic databank for the State Forest Department to match against sequences from wildlife forensic samples referred to the Institute for ascertaining species involved in wildlife trade. The sequences will also be useful to bridge gaps in genetic data on species native to Tamil Nadu.

Keywords: Wildlife crime, Species identification, mtDNA, Cytb, 12S rRNA.

#### **INTRODUCTION**

Determination of species from wildlife specimens is one of the prime goals of forensic laboratories analyzing samples involved in wildlife crimes. The specimens are often meat, hair, ivory, claws, scales, bones or skin from wild mammals, with each sample painting a grim picture of the over-exploitation of wildlife for human monetary gains. Samples from wildlife crime investigations are most often retrieved from illegal hunting, which is one of the major threats to global and national wild vertebrate populations which include several keystone species. The threat posed to wildlife has serious implications on the structure and dynamics of a population in a tropical ecosystem (Kumar et al., 2021).

Wild mammals have long been an important resource for humans and have historically been exploited for economic benefits such as food, fibre, fuel and medicine (Boesch et al., 2017). Uncontrolled exploitation of wildlife often stems from illegal trade of wildlife and their products, which can drive a species to extinction. To prevent such a scenario, legal frameworks such as the Wildlife (Protection) Act, 1972 and CITES help regulate wildlife trade and enforce wildlife protection laws both nationally and internationally. Despite the existence of strict legislation and penalties, the conviction rate in wildlife crimes is often low due to a lack of evidential support in identification of the species involved in crime. Identification of species, whether protected under law or not, is of pivotal importance in the court of law (Kumar et al., 2019). When species

\*Corresponding Author: Vaishnavi Chandramouli, Centre for Wildlife Forensic Sciences, Advanced Institute for Wildlife Conservation, Tamil Nadu Forest Department, Chennai-600048, India. Email: vaishnavi.chandramouli@gmail.com

identification by application of morphological techniques fails due to sample autolysis or lack of anatomical markers in wildlife specimens, DNA analysis provides the vital, foolproof cue. In DNA based species identification, mitochondrial DNA (mtDNA) loci are most often targeted owing to their high copy number, lack of recombination and rates of mutation that coincide with rates of species evolution, thereby allowing efficient discrimination between species (Branicki et al., 2003; Jabin et al., 2019). The high copy number of mtDNA also accounts for increased sensitivity of analysis, especially when using highly degraded samples or samples with intrinsically low amounts of DNA, such as hair (Branicki et al., 2003). Among regions in mtDNA, the Cvtochrome b (Cvtb) and 12SrRNA regions have been demonstrated to be amplified by PCR under standard conditions (Kocher et al., 1989), while COI, 16S rRNA and ND are regions that are also commonly used as targets (Nittu et al., 2021). Sequences generated from these regions are used to determine the unknown species of the specimen by matching against a known reference sequence, using tools such as BLAST and phylogenetic reconstruction (Dawnay et al., 2007). The present study demonstrates the utility of DNA based identification of species using mtDNA markers, from samples without recognizable morphological features, such as tissue, hair and blood. The sequences generated from the study were matched against GenBank database to serve as a local genetic databank to match against sequences from unknown wildlife forensic samples.

#### MATERIALS AND METHODS

#### Sample collection

The study was carried out using hair, blood and tissue specimens collected during necropsy of mammals from Tamil Nadu, India. Tissue samples were collected in containers with 70% ethanol; hair samples were collected in air-tight zip-lock polythene bags and blood sample was collected in EDTA coated vacutainer. All samples were stored at  $-20^{\circ}$  C until processing for DNA extraction.

#### **DNA extraction**

Tissue and hair samples were subjected to digestion in lysis buffer followed by phenol-chloroform treatment. DNA extraction from blood was carried out using sodium perchlorate (Gaur and Reddy, 2017; Bartlett and White, 2003). Negative control was included for every DNA extraction process. Quantification and assessment of quality of extracted DNA was carried out using Nanodrop One spectrophotometer (Thermo Scientific).

#### **PCR** amplification

Partial fragments of *Cytb* and *12S rRNA* genes of mtDNA (Kocher et al., 1989) were amplified using Eppendorf Nexus GSX1 Mastercycler. The PCR reaction mixture of 10  $\mu$ L total volume contained 1X Taq buffer (KAPA Biosystems, SIGMA), 0.25 mM dNTPs, 0.4  $\mu$ M of each primer, 2.5 mM MgCl<sub>2</sub>, 0.25 U *Taq* DNA

Polymerase(KAPA Biosystems, SIGMA) and 1  $\mu$ L of 10-40 ng/ $\mu$ L DNA template. Thermal cycling conditions included initial denaturation at 95°C for 5 min., followed by 35 cycles of denaturation at 95°C for 30 sec., annealing at 55°C for 30 sec., extension at 72°C for 45 sec. and final extension at 72 °C for 10 min. PCR positive and negative controls were incorporated in every reaction. PCR products were analyzed by loading 2  $\mu$ L on 2% agarose gels run using TAE buffer, stained with novel juice stain and visualized under UV transilluminator.

#### DNA sequencing and analysis

Amplified products were purified using QIAquick Gel Extraction Kit (Qiagen, Germany). The purified products were subjected to bi-directional sequencing with forward and reverse primers using ABI 3730 genetic analyzer (Applied Biosystems, California, USA). Sequences were visualized and edited using BioEdit (Hall, T.A., 1999). Sequence similarity percentage was determined using NCBI-BLAST (Altschul *et al.* 1990). Nucleotide frequencies were determined using Python v3.8.4 (Rossum and Drake, 1995). Phylogenetic tree reconstruction and pair wise distances were computed using MEGA X (Kumar *et al.*, 2018).

#### **RESULTS AND DISCUSSION**

A total of 18 samples from 15 mammalian species (Table 1) were amplified using Cytb (ca. 350 bp) and 12S rRNA (ca. 450 bp) primers. Sequences generated from specimens by bi-directional Sanger sequencing were assembled using Bio Edit tool, matched against NCBI-BLAST, and submitted to GenBank database to procure accession numbers (Table 2). Specimen sequences matched with that of respective species in NCBI-GenBank with a percentage similarity of 99-100% (Table 2). This demonstrates universal nature and discriminatory power of the primers used for amplifying mtDNA target regions. Phylogenetic tree construction was carried out using Maximumlikelihood method and Hasegawa-Kishino-Yano model with 1000 bootstrap replications (Hasegawa et al., 1985, Kumar et al., 2018) (Figure 1 & 2). The trees constructed were consistent with the present taxonomic classification of mammals included in this study. Pairwise genetic distance matrix data and mean overall nucleotide base frequencies of the sequences are tabulated in Table 3.

Average read length of the partial *Cytb* fragment was 243 bp. Tree construction for phylogenetic analysis was achieved with 80-100 percent bootstrap support. The samples of *Axis axis* and *Paradoxurus hermaphrodites* used in this study did not yield good quality sequences (nucleotides had q value less than 10). Additional samples of the two species can be evaluated for amplification and good quality sequence generation using the primer pair. Average of interspecific genetic distance of the *Cytb* sequences of 16 mammalian species (Table 4) was calculated to be 0.24. Maximum genetic distance of 0.364 was observed between species *M.silenus* and *P.leo*, while

the minimum genetic distance of 0.071 was observed between species *M.mulatta* and *M.radiata*. All the 18 amplified products yielded good quality sequences. Average read length of the partial *12S rRNA* fragment was 329 bp. Phylogenetic tree constructed classified closely related species under the same node, with an 80-100 percent bootstrap supports. Average of interspecific genetic distance of the 12S sequences of 18 mammalian species (Table 5) was calculated to be 0.156. Maximum genetic distance of 0.263 was observed between species *E.maximus* and *H.indica*, while the minimum genetic distance of 0.014 was observed between species *P.pardus* and *P.leo*.



Figure 1. Maximum-likelihood tree of partial *Cytb*gene sequences using Hasegawa-Kishino-Yano model generated from 13 species. Numbers at nodes indicate bootstrap values (values higher than 80 are given).



**Figure 2.** Maximum-likelihood tree of partial *12S* rRNA gene sequences using Hasegawa-Kishino-Yano model generated from 15 species. Numbers at nodes indicate bootstrap values (values higher than 80 are given).

| Species                    | Status in WPA | Status in CITES   | Significance in IWT                                      | Specimen |
|----------------------------|---------------|-------------------|----------------------------------------------------------|----------|
| Panthera tigris            | Schedule I    | Appendix I        |                                                          | Tissue   |
| Panthera pardus            | Schedule I    | Appendix I        | Poached for tiger skins, bones, claws and teeth (16, 17) | Tissue   |
| Panthera leo               | Schedule I    | Appendix I        |                                                          | Blood    |
| Viverricula indica         | Schedule II   | Appendix III      | Traded for production of world's most expensive coffee-  | Tissue   |
| Paradoxurus hermaphroditus | Schedule II   | Appendix III      | Kopi Luwak (18)                                          | Tissue   |
| Macaca radiata             | Schedule II   | Appendix I        |                                                          | Hair     |
| Macaca mulatta             | Schedule II   |                   | Illegal pet trade, hunting & trapping (19, 20)           | Hair     |
| Macaca silenus             | Schedule I    | Appendix I        |                                                          | Hair     |
| Bos gaurus                 | Schedule I    | Appendix I        | Poached for commercial trade in meat and trophies (21)   | Tissue   |
| Axis axis                  | Schedule III  | No special status | <b>D</b> opphad for skip and most (22)                   | Tissue   |
| Muntiacusmuntjak           | Schedule III  | No special status | Foached for skill and meat (22)                          | Tissue   |
| Moschiola indica           | Schedule I    | No special status | Poached for meat (23)                                    | Hair     |
| Hystrix indica             | Schedule IV   | No special status | Poached for meat and quills (Kumar et al., 2021)         | Tissue   |
| Elephas maximus            | Schedule I    | Appendix I        | Poached for ivory, tail hair (24)                        | Tissue   |
| Dugong dugon               | Schedule I    | Appendix I        | Poached for meat and oil (25)                            | Tissue   |

Table 1. Species analysed, its conservation status and significance in illegal wildlife trade (IWT).

Table 2. GenBank accession number of specimen sequences and percentage match with GenBank database.

| Order           | Family       | Species                       | C. Name             | Size |      | 12S rRNA Re | gion      |      | Cytb region | 1         |  |
|-----------------|--------------|-------------------------------|---------------------|------|------|-------------|-----------|------|-------------|-----------|--|
|                 |              |                               |                     |      | Size | % Match     | GenBank   | Size | % Match     | GenBank   |  |
|                 |              |                               |                     |      | (bp) | with        | accession | (bp) | with        | accession |  |
|                 |              |                               |                     |      |      | GenBank     | no.       |      | GenBank     | no.       |  |
| Carnivora       | Felidae      | Panthera tigris               | Tiger               | 1    | 329  | 100         | MW812364  | 241  | 100         | MW924865  |  |
|                 |              | Panthera pardus               | Leopard             | 1    | 342  | 100         | MW836160  | 283  | 100         | MW924871  |  |
|                 |              | Panthera leo                  | Asiatic lion        | 1    | 327  | 100         | MZ400506  | 151  | 99.34       | MW999343  |  |
|                 | Viverridae   | Viverricula indica            | Small Indian civet  | 1    | 333  | 100         | MZ068092  | 268  | 100         | MZ062899  |  |
|                 |              | Paradoxurus<br>hermaphroditus | Asian palm civet    | 1    | 330  | 100         | MZ068091  | -    | -           | -         |  |
| Cercopithecidae | Primates     | Macaca radiata                | Bonnet macaque      | 1    | 326  | 100         | MW813972  | 211  | 100         | MW924869  |  |
|                 |              | Macaca mulatta                | Rhesus macaque      | 1    | 323  | 100         | MW959043  | 203  | 99.51       | MW924870  |  |
|                 |              | Macaca silenus                | Lion-tailed macaque | 1    | 330  | 100         | MW813974  | 278  | 100         | MW911469  |  |
| Artiodactyla    | Bovidae      | Bos gaurus                    | Indian bison        | 2    | 326  | 100         | MW812301  | 270  | 100         | MW924863  |  |
|                 |              |                               |                     |      |      | 99.69       | MW813973  | 286  |             | MW924860  |  |
|                 | Cervidae     | Axis axis                     | Chital              | 1    | 335  | 100         | MW812370  | -    | -           | -         |  |
|                 |              | Muntiacusmuntjak              | Barking deer        | 2    | 331  | 100         | MW811522  | 217  | 100         | MW924864  |  |
|                 |              |                               |                     |      |      | 99.70       | MW811803  | 233  |             | MW924866  |  |
|                 | Trangulidae  | Moschiola indica              | Indian mouse deer   | 1    | 335  | 99.70       | MZ229626  | 274  | 100         | MZ229355  |  |
| Hystricidae     | Rodentia     | Hystrix indica                | Indian porcupine    | 1    | 324  | 100         | MW813971  | 232  | 100         | MW924868  |  |
| Proboscidea     | Elephantidae | Elephas maximus               | Asian elephant      | 1    | 324  | 100         | MZ068094  | 272  | 100         | MZ062898  |  |
| Sirenia         | Dugongidae   | Dugong dugon                  | Dugong              | 2    | 325  | 100         | MW812371  | 237  | 100         | MW924862  |  |
|                 |              |                               |                     |      | 324  |             | MW812369  | 245  |             | MW924867  |  |

# Table 3. Average nucleotide frequencies and interspecific genetic distances of mammalian species measured using 2 partial mt DNA regions.

| Partial mtDNA |                  | Nucle            | eotide frequency | Interspecific genetic | Average interspecific |                  |
|---------------|------------------|------------------|------------------|-----------------------|-----------------------|------------------|
| region        | A %              | Т %              | G%               | C %                   | distance              | genetic distance |
| Cytochrome b  | $28.55\pm2.6$    | $28.41 \pm 2.00$ | $14.66 \pm 1.48$ | $28.38\pm3.98$        | 0.071-0.364           | 0.24             |
| 12S rRNA      | $36.30 \pm 2.25$ | $22.87 \pm 1.38$ | $17.88 \pm 1.33$ | $22.92\pm2.53$        | 0.014-0.263           | 0.156            |

| Table 4. Pair-w | ise distance | matrix for | Cytb sequences. |
|-----------------|--------------|------------|-----------------|

| _                           | 1     | 2     | 3     | 4     | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
|-----------------------------|-------|-------|-------|-------|---|---|---|---|---|----|----|----|----|
| MW924865 Panthera tigris    |       |       |       |       |   |   |   |   |   |    |    |    |    |
| MW924871 Panthera pardus    | 0.117 |       |       |       |   |   |   |   |   |    |    |    |    |
| MW999343 Panthera leo       | 0.079 | 0.152 |       |       |   |   |   |   |   |    |    |    |    |
| MZ068092 Viverricula indica | 0.141 | 0.192 | 0.099 |       |   |   |   |   |   |    |    |    |    |
| MW924869 Macaca radiata     | 0.280 | 0.294 | 0.325 | 0.303 |   |   |   |   |   |    |    |    |    |

| MW924870 Macaca mulatta   | 0.267 | 0.272 | 0.325 | 0.313 | 0.072 |       |       |       |       |       |       |       |
|---------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| MW911469 Macaca silenus   | 0.310 | 0.347 | 0.364 | 0.315 | 0.123 | 0.128 |       |       |       |       |       |       |
| MW924863 Bos gaurus       | 0.207 | 0.221 | 0.185 | 0.188 | 0.265 | 0.282 | 0.315 |       |       |       |       |       |
| MW924864 Muntiacusmuntjak | 0.176 | 0.197 | 0.199 | 0.160 | 0.271 | 0.266 | 0.319 | 0.101 |       |       |       |       |
| MZ229355 Moschiola indica | 0.178 | 0.192 | 0.192 | 0.244 | 0.270 | 0.231 | 0.315 | 0.174 | 0.160 |       |       |       |
| MW924868 Hystrix indica   | 0.238 | 0.238 | 0.232 | 0.200 | 0.300 | 0.308 | 0.319 | 0.229 | 0.197 | 0.243 |       |       |
| MZ062898 Elephas maximus  | 0.263 | 0.286 | 0.272 | 0.286 | 0.280 | 0.308 | 0.338 | 0.277 | 0.250 | 0.282 | 0.271 |       |
| MW924862 Dugong dugon     | 0.225 | 0.239 | 0.232 | 0.249 | 0.261 | 0.262 | 0.296 | 0.239 | 0.229 | 0.244 | 0.257 | 0.216 |

Table 5. Pair-wise distance matrix for 12S rRNA sequences.

|                                     | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13    | 14    | 15 |
|-------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----|
| MW812364 Panthera tigris            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |    |
| MW836160 Panthera pardus            | 0.024 |       |       |       |       |       |       |       |       |       |       |       |       |       |    |
| MZ400506 Panthera leo               | 0.028 | 0.014 |       |       |       |       |       |       |       |       |       |       |       |       |    |
| MZ068092 Viverricula indica         | 0.078 | 0.087 | 0.072 |       |       |       |       |       |       |       |       |       |       |       |    |
| MZ068091 Paradoxurus hermaphroditus | 0.089 | 0.098 | 0.080 | 0.069 |       |       |       |       |       |       |       |       |       |       |    |
| MW813972 Macaca radiata             | 0.178 | 0.171 | 0.151 | 0.184 | 0.178 |       |       |       |       |       |       |       |       |       |    |
| MW959043 Macaca mulatta             | 0.180 | 0.174 | 0.156 | 0.182 | 0.194 | 0.051 |       |       |       |       |       |       |       |       |    |
| MW813974 Macaca silenus             | 0.165 | 0.165 | 0.143 | 0.177 | 0.187 | 0.055 | 0.079 |       |       |       |       |       |       |       |    |
| MW812301 Bos gaurus                 | 0.124 | 0.130 | 0.116 | 0.129 | 0.144 | 0.192 | 0.176 | 0.189 |       |       |       |       |       |       |    |
| MW812370 Axis axis                  | 0.139 | 0.145 | 0.123 | 0.137 | 0.153 | 0.179 | 0.175 | 0.188 | 0.080 |       |       |       |       |       |    |
| MW811522 Muntiacusmuntjak           | 0.141 | 0.147 | 0.133 | 0.127 | 0.145 | 0.186 | 0.179 | 0.167 | 0.083 | 0.043 |       |       |       |       |    |
| MW813971 Hystrix indica             | 0.128 | 0.137 | 0.128 | 0.139 | 0.129 | 0.176 | 0.182 | 0.188 | 0.150 | 0.143 | 0.139 |       |       |       |    |
| MZ068094 Elephas maximus            | 0.238 | 0.248 | 0.238 | 0.256 | 0.234 | 0.227 | 0.240 | 0.242 | 0.235 | 0.231 | 0.241 | 0.263 |       |       |    |
| MW812371 Dugong dugon               | 0.187 | 0.206 | 0.179 | 0.189 | 0.180 | 0.193 | 0.199 | 0.201 | 0.213 | 0.190 | 0.201 | 0.196 | 0.175 |       |    |
| MZ229626 Moschiola indica           | 0.120 | 0.123 | 0.102 | 0.122 | 0.128 | 0.199 | 0.199 | 0.180 | 0.106 | 0.102 | 0.098 | 0.155 | 0.212 | 0.213 |    |

Analysis of the partial mitochondrial Cvtb and 12S rRNA genes demonstrated multiple conserved and variable sites that helped in inter-species identification, consistent with previous reports (Panicker et al., 2019). This illustrates the broad utility of the primers used in analyzing wildlife samples. Overall, the species analyzed in this study are those that are involved in extensive illegal wildlife trade and protected under national and international laws. The genetic data produced could be helpful for determination of species in future wildlife forensic cases and in creating a local genetic database of species and their products that is highly trafficked and traded. Application of a single primer for determination of species in wildlife forensics is often hindered by limitations such as nature of sample, presence of inhibitors in the sample, quality and concentration of isolated DNA. Use of 2 mtDNA markers can help overcome the limitations as samples may amplify when using at least one of the two markers and will also increase the confidence in data obtained for wildlife forensic samples.

#### CONCLUSION

The study correctly identified the species of the specimens used and demonstrated the potential of molecular markers utilized for application in wildlife forensic sample analysis. This is the first initiative of Advanced Institute for Wildlife Conservation (AIWC) in identification of wildlife samples through DNA based analysis, with which the Institute can support the State Forest Department and other organizations in examination of wildlife forensic case samples.

#### FUNDING

This study is funded by the core funding of Advanced Institute for Wildlife Conservation, Tamil Nadu Forest Department, Chennai, Tamil Nadu.

#### ACKNOWLEDGEMENT

We thank the Chief Wildlife Warden, Tamil Nadu Forest Department, Tamil Nadu, for providing necessary permissions for sample collection. We thank the forest divisions of Tamil Nadu Forest Department for providing samples. We thank Mr. Rakesh Kumar Dogra & Mr. Bakan Jagdish Sudhakar for their support and encouragement. We thank the Director and Zoo Veterinarians of Arignar Anna Zoological Park, Chennai, for providing permission and facility for sample collection. We thank the researchers, Abinaya Nadarajan, Karthy Sivapushanam, Monika Gandhi and Sarathapriya Dharmaraj for their unfaltering support.

#### REFERENCES

Kumar, V.P., Rajpoot, A., Gupta, A., &Rasaily, S.G. (2021). Forensic investigation of a hunting incident of Indian porcupine (*Hystrix indica*) in Uttarakhand: a study to help rein in biodiversity loss. *Forensic Science International: Animals & Environment*, 1, 100002.

- Boesch, L., Mundry, R., Kuehl, H., & Berger, R. (2017). Wild mammals as economic goods and implications for their conservation. *Ecology & Society*, 22(4), 36 doi:https://doi.org/10.5751/ES-09516-220436.
- Kumar, V., Chandra, K., Kundu, S., Tyagi, K., Laskar, B.A., Singha, D., Chakraborty, R., & Pakrashi, A.(2019). Utility of mitochondrial DNA in wildlife forensic science- a reliable identification of confiscated materials in eastern India. *Mitochondrial DNA Part B: Resources*, 4(1), 583-588.
- Branicki, W., Kupiec, T., & Pawlowski, R.(2003). Validation of cytochrome b sequence analysis as a method of species identification. *Journal of Forensic Science*, 48(1).
- Jabin, G., Ghosh, A., Basu, S., Khatri, H., Singh, S.K., Chandra, K., Sharma, L.K., &Thakur, M. (2019). Wildlife forensics in nullifying the false accusation: a case to deal with raw meat. *Mitochondrial DNA Part B: Resources*, 4(1), 736-739.
- Nittu, G., Bhavana, P.M., Shameer, T.T., Ramakrishnan, B., Archana, R., Kaushal, K.K., Khedkar, G.D., Mohan, G., Jyothi, M., &Sanil, R. (2021). Simple nested allele-specific approach with penultimate mismatch for precise species and sex identification of tiger and leopard. *Molecular Biology Reports*, https://doi.org/10.1007/s11033-021-0639-w.
- Dawnay, N., Ogden, R., McEwing, R., Carvalho, G.R., &Thorpe, R.S.(2006). Validation of the barcoding gene COI for use in forensic genetic species identification. *Forensic Science International*, 173, 1-6.
- Gaur, A.&Reddy, P.A. (2017). DNA Techniques in Wildlife Forensics (Animals): Standard Operating Procedures (SOP). CSIR Centre for Cellular and Molecular Biology, Hyderabad, 37p.
- Bartlett & White. (2003). PCR Protocols, *Methods in Molecular Biology*, Vol. 226.
- Hall, T.A. (1999). BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. *Nucleic Acids Symposium Series*, 41, 95-98.
- Van Rossum, G.& Drake, Jr. F.L.(1995). Python reference manual. *Centrum voor Wiskundeen Informatica Amsterdam*.
- Kumar, S., Stecher, G., Li, M., Knyaz, C., &Tamura, K. (2018). Mega X: Molecular Evolutionary Genetics Analysis across computing platforms. *Molecular Biology and Evolution*, 35, 1547-1549.
- Hasegawa, M., Kishino, H., &Yano, T. (1985). Dating the human-ape split by a molecular clock of mitochondrial DNA. *Journal of Molecular Evolution*, 22,160-174.
- Kocher, T.D., Thomas, W.K., Meyer, A., Edwards, S.V., Pääbo, S., Villablanca F.X., &Wilson, A.C. (1989).

Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. *PNAS86*(16), 6196-200. doi: 10.1073/pnas.86.16.6196.

- Panicker, V.P., Haridas, P.C., Narayanan, A., Mohammed, S.,& Babu, B.C.(2019). Mitochondrial 12S rRNA gene sequence analysis, a tool for species identification. *Journal of Wildlife and Biodiversity*, 3(3), 29-35.
- Leopards (2021). URL: https://www.traffic.org/what-wedo/species/leopards/Accessed 14 September 2021.
- Fisher A (2018). As tigers become rarer, poachers are targeting lions. URL: https://www.nationalgeographic.com/animals/article/w ildlife-watch-illegal-trade-lions-teeth-clawspoachingAccessed 14 September 2021.
- Bale R (2016). The disturbing secret behind the world's most expensive coffee. URL: https://www.nationalgeographic.com/animals/article/1 60429-kopi-luwak-captive-civet-coffee-IndonesiaAccessed 14 September 2021.
- Singh M, Kumara HN, Kumar A (2020) Macaca radiata. The IUCN Red List of Threatened Species 2020: e.T12558A17951596. https://dx.doi.org/10.2305/IUCN .UK.2020-2.RLTS.T12558A17951596.en.
- Meet the animals: Lion Tailed Macaque URL: https://reidparkzoo.org/animals/macaque/Accessed 14 September 2021.
- Indian Bison Facts URL: (2021). https://tigerreservesinindia.com/wildlife-inindia/endangered-animals-in-india/indianbison/Accessed 14 September 2021.
- Indian Muntjac URL: https://animaldiversity.org/accounts/Muntiacus\_muntja k/Accessed 14 September 2021.
- Indian spotted chevrotain URL: https://animaldiversity.org/accounts/Moschiola\_memin na/Accessed 14 September 2021.
- India's mammoth problem: Elephants threatened by poaching and illegal wildlife trade (2016). URL: https://www.wwfindia.org/?15201/Indias-mammothproblem-Elephants-tAccessed 14 September 2021.
- Dugong Status Report and Action Plans for Countries and Territories. UNEP/DEWA/RS.02-1 ISBN 92-807-2130-5 URL: https://portals.iucn.org/library/sites/library/files/docum ents/2002-001.pdfAccessed 14 September 2021.
- Altschul, S.F., Gish, W., Miller, W., Myers, E.W., & Lipman, D.J. (1990). Basic local alignment search tool. *Journal of Molecular Biology*, 215, 403-410.